Intelligent Multi-Agent Systems for Enterprise

Build scalable AI applications with advanced orchestration, fault tolerance, and dynamic scaling. PilottAI provides the production-ready infrastructure for your autonomous agent ecosystem.

10x Faster Development
99.9% More Efficient
MIT Licensed

Enterprise-Ready Features

Build production-grade agent systems with battle-tested components

🚀

Advanced Agent Architecture

  • Hierarchical multi-agent system
  • Built-in task orchestration
  • Flexible communication patterns
  • Enhanced memory management
Learn more
âš¡

Production Reliability

  • Asynchronous processing
  • Dynamic scaling
  • Intelligent load balancing
  • Comprehensive fault tolerance
Learn more
🧠

Advanced Memory System

  • Semantic storage and retrieval
  • Task history tracking
  • Context preservation
  • Intelligent knowledge retrieval
Learn more
🔌

Seamless Integration

  • Multiple LLM providers
  • Extensible tool system
  • Document processing
  • WebSocket support
Learn more

Simple to Use, Powerful Under the Hood

Get started with just a few lines of code


from pilott import Serve
from pilott.core import AgentConfig, LLMConfig

# Configure LLM
llm_config = LLMConfig(
    model_name="gpt-4",
    provider="openai",
    api_key="your-api-key"
)

async def main():
    # Initialize system
    pilott = Serve(name="DocumentProcessor")

    # Add processing agent
    agent = await pilott.add_agent(
        role="processor",
        goal="Process documents efficiently",
        llm_config=llm_config
    )

    # Execute task
    result = await pilott.execute([{
        "description": "Extract insights from Q1 report",
        "file_path": "documents/q1_report.pdf"
    }])

    print(f"Processing result: {result[0].output}")

if __name__ == "__main__":
    import asyncio
    asyncio.run(main())
                

# Create specialized agents
research_analyst = await pilott.add_agent(
    role="research_analyst",
    goal="Analyze data and provide insights",
    tools=["data_analyzer", "research_synthesizer"],
    llm_config=llm_config
)

customer_service = await pilott.add_agent(
    role="customer_service",
    goal="Handle customer inquiries professionally",
    tools=["email_sender", "ticket_manager"],
    llm_config=llm_config
)

# Execute agent-specific tasks
analysis_result = await research_analyst.execute_task({
    "type": "analyze_market_data",
    "data_source": "market_survey_2024",
    "variables": ["price", "demand"]
})
                

# Configure orchestration
from pilott.orchestration import LoadBalancer, DynamicScaling

# Setup load balancing
lb_config = {
    "check_interval": 30,
    "overload_threshold": 0.8
}
load_balancer = LoadBalancer(pilott, config=lb_config)
await load_balancer.start()

# Configure dynamic scaling
scaling_config = {
    "min_agents": 2,
    "max_agents": 10,
    "scale_up_threshold": 0.8
}
dynamic_scaling = DynamicScaling(pilott, config=scaling_config)
await dynamic_scaling.start()

# System automatically scales based on load
for i in range(100):
    pilott.execute([create_task(f"Task {i}")])
                

# Enhanced memory management
from pilott.memory import EnhancedMemory

# Store and retrieve semantic information
await agent.memory.store_semantic(
    text="Important customer feedback on the Q1 product launch",
    metadata={"source": "customer_survey", "sentiment": "positive"},
    tags={"feedback", "product_launch", "q1"}
)

# Retrieve relevant context
related_info = await agent.memory.semantic_search(
    query="product launch feedback",
    tags={"customer_survey"},
    limit=5
)

# Memory persists across agent executions
await agent.memory.store_task(
    task_id="task-123",
    task_data={"description": "Handle product inquiry", "status": "completed"}
)
                

Robust Architecture

Built for production-grade AI applications

Orchestration Layer Agent Layer Memory System LLM Integration Task Router Load Balancer Dynamic Scaling Fault Tolerance Research Agent Document Agent Email Agent Sales Agent Semantic Store Task History OpenAI Anthropic

Specialized Agent Ecosystem

Pre-built agents for common enterprise tasks

⌘
Research Analyst

Research Analyst

Data Analysis Expert

Research Analyst

Skills: Data Analysis, Pattern Recognition, Insight Generation

Use Cases: Market Analysis, Competitive Research, Trend Identification

Tools: Data Analyzer, Research Synthesizer

Learn More
Document Processing

Document Agent

Content Processor

Document Agent

Skills: Text Extraction, Content Analysis, Summarization

Use Cases: Report Analysis, Contract Processing, Document Extraction

Tools: Text Extractor, Content Analyzer, Summarizer

Learn More
Customer Service

Customer Service

Support Specialist

Customer Service

Skills: Ticket Management, Customer Interaction, Issue Resolution

Use Cases: Support Automation, Inquiry Handling, Customer Engagement

Tools: Email Sender, Ticket Manager, Knowledge Base

Learn More
Email Agent

Email Agent

Communication Expert

Email Agent

Skills: Email Processing, Template Management, Sentiment Analysis

Use Cases: Email Automation, Communication Management, Response Generation

Tools: Email Sender, Email Analyzer, Template Manager

Learn More
Create Custom Agent